
Replication Is More Efficient Than You Think

Anne Benoit
∗

Anne.Benoit@ens-lyon.fr

Ecole Normale Superieure de Lyon

Lyon, France

Thomas Herault
†

herault@icl.utk.edu

The University of Tennessee

Knoxville, Tennessee

Valentin Le Fèvre
∗

valentin.le-fevre@ens-lyon.fr

Ecole Normale Superieure de Lyon

Lyon, France

Yves Robert
∗†

Yves.Robert@ens-lyon.fr

Ecole Normale Superieure de Lyon

Lyon, France

The University of Tennessee

Knoxville, Tennessee

ABSTRACT
This paper revisits replication coupled with checkpointing for fail-

stop errors. Replication enables the application to survive many

fail-stop errors, thereby allowing for longer checkpointing peri-

ods. Previously published works use replication with the no-restart
strategy, which works as follows: (i) compute the application Mean

Time To Interruption (MTTI) M as a function of the number of

processor pairs and the individual processor Mean Time Between

Failures (MTBF); (ii) use checkpointing period T no

MTTI =
√
2MC à

la Young/Daly, where C is the checkpoint duration; and (iii) never

restart failed processors until the application crashes. We introduce

the restart strategy where failed processors are restarted after each

checkpoint. We compute the optimal checkpointing period T rs

opt for

this strategy, which is much larger than T no

MTTI, thereby decreasing

I/O pressure. We show through simulations that usingT rs

opt and the

restart strategy, instead of T no

MTTI and the usual no-restart strategy,
significantly decreases the overhead induced by replication.

ACM Reference Format:
Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert. 2019.

Replication Is More Efficient Than You Think. In Proceedings of ACM Con-
ference (SC’19). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
Current computing platforms have millions of cores: the Summit

system at the Oak Ridge National Laboratory (ORNL) is listed at

number one in the TOP500 ranking [38], and it has more than

two million cores. The Chinese Sunway TaihuLight (ranked as

number 3) has even more than 10 million cores. These large-scale

computing systems are frequently confronted with failures, also

called fail-stop errors. Indeed, even if individual cores are reliable,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC’19, November 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

for instance if the Mean Time Between Failures (MTBF) for a core

is µ = 10 years, then the MTBF for a platform with a million cores

(N = 10
6
) becomes µN =

µ
N ≈ 5.2 minutes, meaning that a failure

strikes the platform every five minutes, as shown in [24].

The classical technique to deal with failures consists of using a

checkpoint-restart mechanism: the state of the application is peri-

odically checkpointed, and when a failure occurs, we recover from

the last valid checkpoint and resume the execution from that point

on, rather than starting the execution from scratch. The key for an

efficient checkpointing policy is to decide how often to checkpoint.

Young [42] and Daly [14] derived the well-known Young/Daly for-

mula TYD =
√
2µNC for the optimal checkpointing period, where

µN is the platform MTBF, and C is the checkpointing duration.

Another technique that has been advocated for dealing with

failures is process replication, where each process in a parallel MPI

(Message Passing Interface) application is duplicated to increase

the Mean Time To Interruption (MTTI). The MTTI is the mean time

between two application failures. If a process is struck by a failure,

the execution can continue until the replica of this process is also

struck by a failure. More precisely, processors are arranged by pairs,

i.e., each processor has a replica, and the application fails whenever

both processors in a same pair have been struck by a failure. With

replication, one considers the MTTI rather than the MTBF, because

the application can survive many failures before crashing. Given the

high rate of failures on large-scale systems, process replication is

combinedwith periodic checkpoint-restart, as proposed for instance

in [18, 35, 45] for high-performance computing (HPC) platforms,

and in [28, 41] for grid computing. Then, when the application fails,

one can recover from the last valid checkpoint, just as was the case

without replication. Intuitively, since many failures are needed to

interrupt the application, the checkpointing period should be much

larger than without replication. Previous works [12, 20, 25] all use

T no

MTTI =
√
2MNC for the checkpointing period, where MN is the

MTTI with N processors (instead of the MTBF µN).

To illustrate the impact of replication on reliability at scale, Fig-

ure 1 compares the probability distribution of the time to application

failure for: (a) a single processor, two parallel processors and a pair

of replicated processors; and (b) a platform of N = 100, 000 parallel

processors, N = 200, 000 parallel processors without replication,

and b = 100, 000 processor pairs with replication. In all cases, the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

individual MTBF of a single processor is µ = 5 years. The time

to reach 90% chances of having a fatal failure is: (a) 1688 days for

one processor, 844 days for two processors and 2178 days for a

processor pair; and (b) 24 minutes for 100,000 processors, 12 min-

utes for 200,000 processors and 5081 minutes (almost 85 hours)

for 100,000 processor pairs. We see that replication is key to safe

application progress at scale! Again, the cost is that half of the

resources are doing redundant work, hence time-to-solution is in-

creased. We compare time-to-solution with and without replication

in Section 7.6. We also see that in heavily failure-prone environ-

ments (small MTBF values), checkpoint/restart alone cannot ensure

full reliability, and must be complemented by replication.

One major contribution of this paper is to introduce a new ap-

proach that minimizes the overhead incurred by the checkpoint-

restartmechanismwhen coupledwith replication. Previousworks [12,

20, 25] use the no-restart strategy: if a processor was struck by a

failure (but not its replica), then the processor remains failed (no re-

covery) until the whole application fails. Hence, there is a recovery

only everyMN seconds on average, whenever the application fails.

Many periodic checkpoints are taken in between two application

crashes, with more and more processors failing on the fly. To the

best of our knowledge, analytically computing the optimal period

for no-restart is an open problem (see Section 4.2 for more details,

where we also show that non-periodic strategies are more efficient

for no-restart), but simulations can help assess this approach.

The study of the no-restart strategy raises an important question:

should failed processors be restarted earlier on in the execution?

Instead of waiting for an application crash to rejuvenate the whole

platform, a simple approach would be to restart processors immedi-

ately after each failure. Let restart-on-failure denote this strategy. It
ensures that all processor pairs involve two live processors through-

out execution, andwould even suppress the notion of checkpointing

periods. Instead, after each failure striking a processor, its replica

would checkpoint immediately, and the spare processor replacing

the failed processorwould read that checkpoint to resume execution.

There is a small risk of fatal crash if a second failure should strike

the replica when writing its checkpoint, but (i) the risk is very small

because the probability of such a cascade of two narrowly spaced

failures is quite low; and (ii) if the checkpoint protocol is scalable,

every other processor can checkpoint in parallel with the replica,

0 1000 2000 3000 4000 5000
t (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 A
pp

lic
at

io
n

Fa
ilu

re

1 proc
2 procs
1 pair

(a) CDFs of the probability distri-
bution of time to app. failure for
one processor, two parallel proces-
sors and one proc. pair (replication).

10 4 10 3 10 2 10 1 100 101 102

t (hours)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 A
pp

lic
at

io
n

Fa
ilu

re

100,000 procs
200,000 procs
100,000 pairs

(b) CDFs of the proba. distrib. of
time to app. failure for 100,000 paral-
lel proc., 200,0000 parallel proc. and
100,000 proc. pairs (replication).

Figure 1: Comparison of CDFs with and without replication.

and there is no additional time overhead. With tightly coupled ap-

plications, the other processors would likely have to wait until the

spare is able to restart, and they can checkpoint instead of idling

during that wait. While intuitively appealing, the restart-on-failure
strategy may lead to too many checkpoints and restarts, especially

in scenarios when failures strike frequently. However, frequent

failures were exactly the reason to deploy replication in the first

place, precisely to avoid having to restart after each failure.

In this work, we introduce the restart strategy, which requires

any failed processor to recover each time a checkpoint is taken.

This ensures that after any checkpoint at the end of a successful

period, all processors are alive. This is a middle ground between the

no-restart and restart-on-failure strategies, because failed processors
are restarted at the end of each period with restart. On the one hand,
a given period maywell include many failures, hence restart restarts
processors less frequently than restart-on-failure. On the other hand,
there will be several periods in between two application crashes,

hence restart restarts processors more frequently than no-restart.
Periodic checkpointing is optimal with the restart strategy: the

next period should have same length as the previous one, because

we have the same initial conditions at the beginning of each period.

Restarting failed processors when checkpointing can introduce

additional overhead, but we show that it is very small, and even

non-existent when in-memory (a.k.a. buddy) checkpointing is used

as the first-level of a hierarchical multi-level checkpointing pro-

tocol (such state-of-the-art protocols are routinely deployed on

large-scale platforms [3, 11, 29]). A key contribution of this paper is

a mathematical analysis of the restart strategy, with a closed-form

formula for its optimal checkpointing period. We show that the

optimal checkpointing period for the restart strategy has the order

Θ(µ
2

3), instead of theΘ(µ
1

2) used in previous works for no-restart as
an extension of the Young/Daly formula [12, 20, 25]. Hence, as the

error rate increases, the optimal period becomes much longer than

the value that has been used in all previous works (with no-restart).
Consequently, checkpoints are much less frequent, thereby dramat-

ically decreasing the pressure on the I/O system.

The main contributions of this paper are the following:

• We provide the first closed-form expression of the application

MTTIMN with replication;

• We introduce the restart strategy for replication, where we re-

cover failed processors during each checkpoint;

•We formally analyze the restart strategy, and provide the optimal

checkpointing period with this strategy;

• We apply these results to applications following Amdahl’s law,

i.e., applications that are not fully parallel but have an inherent

sequential part, and compare the time-to-solution achieved with

and without replication;

• We validate the model through comprehensive simulations, by

showing that analytical results, using first-order approximations

and making some additional assumptions (no failures during check-

point and recovery), are quite close to simulation results; for these

simulations, we use both randomly generated failures and log traces.

•We compare through simulations the overhead obtained with the

optimal strategy introduced in this work (restart strategy, optimal

checkpointing period) to those used in all previous works (no-restart
strategy, extension of the Young/Daly checkpointing period), as

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

well as with strategies that use partial replication or that restart

only at some of the checkpoints, and demonstrate that we can sig-

nificantly decrease both total execution time and utilization of the

I/O file system.

The paper is organized as follows. We first describe the model

in Section 2. We recall how to compute the optimal checkpointing

period when no replication is used in Section 3. The core contribu-

tion is presented in Section 4, where we explain how to compute

the MTTI with b (= N
2
) processor pairs, detail the restart strategy,

and show how to derive the optimal checkpointing period with

this restart strategy. Results are applied to applications following
Amdahl’s law in Section 5. An asymptotic analysis of no-restart
and restart is provided in Section 6. The experimental evaluation in

Section 7 presents extensive simulation results, demonstrating that

replication is indeed more efficient than you think, when enforcing

the restart strategy instead of the no-restart strategy. Finally, we
discuss related work in Section 8, and conclude in Section 9.

2 MODEL
This section describes the model, with an emphasis on the cost of a

combined checkpoint-restart operation.

Fail-stop errors. Throughout the text, we consider a platformwith

N identical processors. The platform is subject to fail-stop errors,

or failures, that interrupt the application. Similarly to previous

work [17, 20, 25], for the mathematical analysis, we assume that

errors are independent and identically distributed (IID), and that

they strike each processor according to an exponential probability

distribution exp(λ)with support [0,∞), probability density function

(PDF) f (t) = λe−λt and cumulative distribution function (CDF)

F (T) = P(X ≤ T) = 1 − e−λT . We also introduce the reliability

functionG(T) = 1 − F (T) = e−λT . The expected value µ = 1

λ of the

exp(λ) distribution is the MTBF on one processor. We lift the IID

assumption in the performance evaluation section by using trace

logs from real platforms.

Checkpointing. To cope with errors, we use periodic coordinated

checkpointing. We assume that the divisible application executes

for a very long time (asymptotically infinite) and we partition the

execution into periods. Each period P consists of a work segment

of duration T followed by a checkpoint of duration C . After an
error, there is a downtime of duration D (corresponding to the time

needed to migrate to a spare processor), a recovery of size R, and
then one needs to re-execute the period from its beginning.

Replication. We use another fault tolerance technique, namely

replication. Each process has a replica, which follows the exact

same states in its execution. To ensure this, when a process receives

a message, its replica also receives the same message, and messages

are delivered in the same order to the application (an approach

called active replication; see [20, 23]). If a crash hits a process at any

time, and its replica is still alive, the replica continues the execution

alone until a new process can replace the dead one.

We rely on the traditional process allocation strategy that as-

signs processes and their replicas on remote parts of the system

(typically different racks) [9]. This strategy mitigates the risk that a

process and its replica would both fail within a short time interval

(much shorter than the expected MTTI). As stated in [16], when

failure correlations are observed, their correlation diminishes when

the processes are far away from each other in the memory hierar-

chy, and becomes undistinguishable from the null hypothesis (no

correlation) when processes belong to different racks.

Combined checkpoint-restart. In this paper, we propose the restart
strategy where failed processes are restarted as soon as the next

checkpoint wave happens. When that happens, and processes need

to be restarted, the cost of a checkpoint and restart wave, CR
, is

then increased: one instance of each surviving process must save

their state, then processes for the missing instances of the replicas

must be allocated; the new processes must load the current state,

which has been checkpointed, and join the system to start acting as

a replica. The first part of the restart operation, allocating processes

to replace the failed ones, can be managed in parallel with the

checkpoint of the surviving processes. Using spare processes, this

allocation time can be very small and we will consider it negligible

compared to the checkpoint saving and loading times. Similarly,

integrating the newly spawned process inside the communication

system when using spares is negligible when using mechanisms

such as the ones described in [8].

There is a large variety of checkpointing libraries and approaches

to help applications save their state. [3, 11, 29] are typically used

in HPC systems for coordinated checkpointing, and use the en-

tire memory hierarchy to speed up the checkpointing cost: the

checkpoint is first saved on local memory, then uploaded onto local

storage (SSD, NVRAM if available), and eventually to the shared

file system. As soon as a copy of the state is available on the closest

memory, the checkpoint is considered as taken. Loading that check-

point requires that the application state from the closest memory

be sent to the memory of the new hosting process.

Another efficient approach to checkpoint is to use in-memory

checkpoint replication using the memory of a ’buddy’ process

(see [31, 44]). To manage the risk of losing the checkpoint in case of

failure of two buddy processes, the checkpoint must also be saved

on reliable media, as is done in the approaches above. Importantly,

in-memory checkpointing is particularly fitted for the restart strat-
egy, because the buddy process and the replica are the same process:

in that case, the surviving processes upload their checkpoint di-

rectly onto the memory of the newly spawned replicas; as soon as

this communication is done, the processes can continue working.

Contrary to traditional buddy checkpointing, it is not necessary

to exchange the checkpoints between a pair of surviving buddies

since, per the replication technique, both checkpoints are identical.

In the worst case, if a sequential approach is used, combining

checkpointing and restart takes at most twice the time to checkpoint

only; in the best case, using buddy checkpointing, the overhead of

adding the restart to the checkpoint is negligible. We consider the

full spectrum C ≤ CR ≤ 2C in the simulations.

As discussed in [20, 32], checkpoint time varies significantly

depending upon the target application and the hardware capabilities.

We will consider a time to checkpoint within two reasonable limits:

60s ≤ C ≤ 600s , following [25].

First-order approximation. Throughout the paper, we are inter-
ested in first-order approximations, because exact formulas are not

analytically tractable. We carefully state the underlying hypothe-

ses that are needed to enforce the validity of first-order results.

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

Basically, the first-order approximation will be the first, and most

meaningful, term of the Taylor expansion of the overhead occurring

every period when the error rate λ tends to zero.

3 BACKGROUND
In this section, we briefly summarize well-known results on the

optimal checkpointing period when replication is not used, starting

with a single processor in Section 3.1, and then generalizing to the

case with N processors in Section 3.2.

3.1 With a Single Processor
We aim at computing the expected time E(T) to execute a period of
length P = T +C . The optimal period length will be obtained for

the value of T , minimizing the overhead

H(T) =
E(T)

T
− 1. (1)

We temporarily assume that fail-stop errors strike only during

workT and not during checkpointC nor recovery R. The following
recursive equation is the key to most derivations:

E(T) = (1 − F (T))(T +C) + F (T)(T
lost

(T) + D + R + E(T)). (2)

Equation (2) reads as follows: with probability 1 − F (T), the execu-
tion is successful and lasts T + C seconds; with probability F (T),
an error strikes before completion, and we need to account for

time lost T
lost

(T), downtime D and recovery R before starting the

computation anew. The expression for T
lost

(T) is the following:

T
lost

(T) =

∫ ∞

0

tP(X = t |X ≤ T)dt =
1

F (T)

∫ T

0

t f (t)dt .

Integrating by parts and re-arranging terms in Equation (2), we

derive E(T) = T + C + F (T)
1−F (T) (Tlost(T) + D + R) and H(T) = C

T +

F (T)
T (1−F (T)) (D+R)+

∫ T
0
G(t)dt

T (1−F (T)) −1. Now, if we instantiate the value of

F (T) = 1−G(T) = 1− e−λT , we obtain H(T) = C
T +

eλT −1
T (D +R +

1

λ) − 1. We can find the value Topt by differentiating and searching

for the zero of the derivative, but the solution is complicated as

it involves the Lambert function [14, 24]. Instead, we use the Tay-

lor expansion of e−λT =
∑∞
i=0(−1)

i (λT)i
i ! and the approximation

e−λT = 1−λT + (λT)2
2
+o(λ2T 2). This makes sense only if λT tends

to zero. It is reasonable to make this assumption, since the length

of the period P must be much smaller than the error MTBF µ = 1

λ .

Hence, we look for T = Θ(λ−x), where 0 < x < 1. Note that x
represents the order of magnitude of T as a function of the error

rate λ. We can then safely write

H(T) =
C

T
+
λT

2

+ o(λT). (3)

Now,
C
T = Θ(λx) and λT

2
= Θ(λ1−x), hence the order of magni-

tude of the overhead is H(T) = Θ(λmax(x,1−x)), which is minimum

for x = 1

2
. Differentiating Equation (3), we obtain

Topt =

√
2C

λ
= Θ(λ−

1

2), and Hopt =
√
2Cλ + o(λ

1

2) = Θ(λ
1

2) (4)

which is the well-known and original Young formula [42].

Variants of Equation (4) have been proposed in the literature,

such as Topt =
√
2(µ + R)C in [14] or Topt =

√
2(µ − D − R)C − C

in [24]. All variants are approximations that collapse to Equation (4).

This is because the resilience parameters C , D, and R are constants

and thus negligible in front of Topt when λ tends to zero. This

also explains that assuming that fail-stop errors may strike during

checkpoint or recovery has no impact on the first-order approxi-

mation of the period given in Equation (4). For instance, assuming

that fail-stop errors strike during checkpoints, we would modify

Equation (2) into

E(T+C) = (1−F (T+C))(T+C)+F (T+C)(T
lost

(T+C)+D+R+E(T+C))

and derive the same result as in Equation (4). Similarly, assuming

that fail-stop errors strike during recovery, we would replace R
with E(R), which can be computed via an equation similar to that

for E(T), again without modifying the final result.

Finally, a very intuitive way to retrieve Equation (4) is the follow-

ing: consider a period of length P = T +C . There is a failure-free

overhead
C
T , and a failure-induced overhead

1

µ × T
2
, because with

frequency
1

µ an error strikes, and on average it strikes in the mid-

dle of the period and we lose half of it. Adding up both overhead

sources gives

C

T
+

T

2µ
, (5)

which is minimum when T =
√
2µC . While not fully rigorous, this

derivation helps understand the tradeoff related to the optimal

checkpointing frequency.

3.2 With N Processors
The previous analysis can be directly extended to multiple proces-

sors. Indeed, if fail-stop errors strike each processor according to an

exp(λ) probability distribution, then these errors strike the whole

platform made of N identical processors according to an exp(Nλ)
probability distribution [24]. In other words, the platform MTBF

is µN =
µ
N , which is intuitive: the number of failures increases

linearly with the number of processors N , hence the mean time

between two failures is divided byN . All previous derivations apply,

and we obtain the optimal checkpointing period and overhead:

Topt =

√
2C

Nλ
= Θ(λ−

1

2), and Hopt =
√
2CNλ+o(λ

1

2) = Θ(λ
1

2) (6)

This value ofTopt can be intuitively retrieved with the same (not

fully rigorous) reasoning as before (Equation (5)): in a period of

length P = T +C , the failure-free overhead is
C
T , and the failure-

induced overhead becomes
1

µN × T
2
: we factor in an updated value

of the failure frequency, using
1

µN =
N
µ instead of

1

µ . Both overhead

sources add up to

C

T
+

T

2µN
=
C

T
+
NT

2µ
, (7)

which is minimum when T =

√
2µC
N .

4 REPLICATION
This section deals with process replication for fail-stop errors, as

introduced in [20] and recently revisited by [25]. We consider a

platform with N = 2b processors. Exactly as in Section 3, each

processor fails according to a probability distribution exp(λ), and
the platformMTBF is µN =

µ
N . We still assume that checkpoint and

recovery are error-free: it simplifies the analysis without modifying

the first-order approximation of the optimal checkpointing period.

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

Processors are arranged by pairs, meaning that each processor

has a replica. The application executes as if there were only b
available processors, hence with a reduced throughput. However, a

single failure does not interrupt the application, because the replica

of the failed processor can continue the execution. The application

can thus survive many failures, until both replicas of a given pair are

struck by a failure. How many failures are needed, in expectation,

to interrupt the application? We compute this value in Section 4.1.

Then, we proceed to deriving the optimal checkpointing period,

first with one processor pair in Section 4.2, before dealing with the

general case in Section 4.3.

4.1 Computing the Mean Time To Interruption
Let n

fail
(2b) be the expected number of failures to interrupt the

application, withb processor pairs. Then, the applicationMTTIM
2b

with b processor pairs (hence N = 2b processors) is given by

M
2b = nfail(2b) µ2b = nfail(2b)

µ

2b
=

n
fail

(2b)

2λb
, (8)

because each failure strikes every µ
2b seconds in expectation. Com-

puting the value of n
fail

(2b) has received considerable attention in

previous work. In [20, 34], the authors made an analogy with the

birthday problem and use the Ramanujan function [21] to derive

the formula n
fail

(2b) = 1 +
∑b
k=0

b!
(b−k)!b ;k ≈

√
πb
2
. The analogy is

not fully correct, because failures can strike either replica of a pair.

A correct recursive formula is provided in [12], albeit without a

closed-form expression. Recently, the authors in [25] showed that

n
fail

(2b) = 2b4b
∫ 1

2

0

xb−1(1 − x)bdx (9)

but did not give a closed-form expression either. We provide such

an expression below:

Theorem 4.1.

nfail(2b) = 1 + 4b /

(
2b

b

)
. (10)

The proof, which uses the incomplete Beta function [39, 40], can

be found in the companion research report [6, 7]. Using Sterling’s

formula, we easily derive that n
fail

(2b) ≈
√
πb, which is 40% more

than the value

√
πb
2

used in [20, 34].

Plugging the value ofn
fail

(2b) back in Equation (8) gives the value
of the MTTIM

2b . As already mentioned, previous works [12, 20, 25]

all use the checkpointing period

T no

MTTI =
√
2M

2bC (11)

to minimize execution time overhead. This value follows from the

same derivation as in Equations (5) and (7). Consider a period of

length P = T + C . The failure-free overhead is still
C
T , and the

failure-induced overhead becomes
1

M
2b

× T
2
: we factor in an up-

dated value of the failure frequency, which now becomes the fatal

failure frequency, namely
1

M
2b
. Both overhead sources add up to

C

T
+

T

2M
2b
, (12)

which is minimum when T =
√
2M

2bC .
In the following, we analyze the restart strategy. We start with

one processor pair (b = 1) in Section 4.2, before dealing with the

general case in Section 4.3.

4.2 With One Processor Pair
We consider two processors working together as replicas. The fail-

ure rate is λ = 1

µ for each processor, and the pair MTBF is µ2 =
µ
2
,

while the pair MTTI is M2 =
3µ
2
because n

fail
(2) = 3. We analyze

the restart strategy, which restarts a (potentially) failed processor at

every checkpoint. Hence, the checkpoint has durationCR
and notC .

Consider a period of length P = T +CR
. If one processor fails before

the checkpoint but the other survives until reaching it, the period

is executed successfully. The period is re-executed only when both

processors fail within T seconds. Let p1(T) denote the probability

that both processors fail duringT seconds: p1(T) = (1− e−λT)2. We

compute the expected time E(T) for period of duration P = T +CR

using the following recursive equation:

E(T) = (1 −p1(T))(T +C
R) +p1(T)(Tlost(T) +D + R + E(T)). (13)

Here,CR
denotes the time to checkpoint, and in addition, to recover

whenever one of the two processors had failed during the period.

As discussed in Section 2, we haveC ≤ CR ≤ C +R: the value ofCR

depends upon the amount of overlap between the checkpoint and

the possible recovery of one processor.

Consider the scenario where one processor fails before reaching

the end of the period, while the other succeeds and takes the check-

point. The no-restart strategy continues execution, hence pays only
for a regular checkpoint of cost C , and when the live processor is

struck by a failure (every M2 seconds on average), we roll back

and recover for both processors [12, 20, 25]. However, the new

restart strategy requires any failed processor to recover whenever

a checkpoint is taken, hence at a cost CR
. This ensures that after

any checkpoint at the end of a successful period, we have two live

processors, and thus the same initial conditions. Hence, periodic

checkpointing is optimal with this strategy. We compare the restart
and no-restart strategies through simulations in Section 7.

As before, in Equation (13), T
lost

(T) is the average time lost,

knowing that both processors have failed before T seconds. While

T
lost

(T) ∼ T
2
when considering a single processor, it is no longer the

case with a pair of replicas. Indeed, we compute T
lost

(T) as follows:

T
lost

(T) =

∫ ∞

0

tP(X = t |t ≤ T)dt =
1

p1(T)

∫ T

0

t
dP(X ≤ t)

dt
dt

=
2λ

(1 − e−λT)2

∫ T

0

t(e−λt − e−2λt)dt .

After integration, we find that

T
lost

(T) =
(2e−2λT − 4e−λT)λT + e−2λT − 4e−λT + 3

2λ(1 − e−λT)2
=

1

2λ

u(λT)

v(λT)
,

withu(y) = (2e−2y −4e−y)y+e−2y −4e−y +3 andv(y) = (1−e−y)2.
Assuming thatT = Θ(λ−x)with 0 < x < 1 as in Section 3.1, then

Taylor expansions lead to u(y) = 4

3
y3 + o(y3) and v(y) = y2 + y3 +

o(y3) for y = λT = o(1), meaning that T
lost

(T) = 1

2λ

4λT
3
+o(λT)

1+λT+o(λT) .

Using the division rule, we obtain T
lost

(T) = 1

2λ (
4λT
3
+ o(λT)) =

2T
3
+o(T). Note that we lose two thirds of the periodwith a processor

pair rather than one half with a single processor. Plugging back the

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

value of T
lost

(T) and solving, we obtain:

E(T) = T+CR+(D+R+
(2e−2λT − 4e−λT)λT + e−2λT − 4e−λT + 3

2λ(1 − e−λT)2
)·
(eλT − 1)2

2eλT − 1

.

(14)

We then compute the wasteHrs(T) of the restart strategy as follows:

Hrs(T) =
E(T)

T
− 1 =

CR

T
+
2

3

λ2T 2 + o(λ2T 2). (15)

Moreover, with T = Θ(λ−x), we have CR

T = Θ(λx) and 2

3
λ2T 2 =

Θ(λ2−2x), hence Hrs(T) = Θ(λmax(x,2−2x)), which is minimum for

x = 2

3
. Differentiating, we readily obtain:

Topt =

(
3CR

4λ2

) 1

3

= Θ(λ−
2

3), (16)

Hrs(Topt) =

(
3CRλ
√
2

) 2

3

+ o(λ
2

3) = Θ(λ
2

3). (17)

Note that the optimal period has the order Topt = Θ(λ−
2

3) = Θ(µ
2

3),

while the extension

√
2M2C of the Young/Daly formula has the

order Θ(λ−
1

2) = Θ(µ
1

2). This means that the optimal period is much

longer than the value that has been used in all previous works. This

result generalizes to several processor pairs, as shown in Section 4.3.

We further discuss asymptotic results in Section 6.

For an intuitive way to retrieve Equation (16), the derivation is

similar to that used for Equations (5), (7) and (12). Consider a period

of length P = T + CR
. The failure-free overhead is still

CR

T , and

the failure-induced overhead becomes
1

µ
T
µ × 2T

3
: we factor in an

updated value of the fatal failure frequency
1

µ
T
µ : the first failure

strikes with frequency
1

µ , and then with frequency
T
µ , there is an-

other failure before the end of the period. As for the time lost, it

becomes
2T
3
, because in average the first error strikes at one third

of the period and the second error strikes at two-third of the period:

indeed, we know that there are two errors in the period, and they

are equally spaced in average. Altogether, both overhead sources

add up to CR

T
+
2T 2

3µ2
, (18)

which is exactly Equation (15).

We conclude this section with a comment on the no-restart strat-
egy. The intuitive derivation in Equation (12) leads to Hno(T) =
C
T +

T
2M

2b
. We now understand that this derivation is accurate if

we have T
lost

(T) = T
2
+ o(T). While this latter equality is proven

true without replication [14], it is unknown whether it still holds

with replication. Hence, computing the optimal period for no-restart
remains an open problem, even with a single processor pair.

Going further, Figure 2 shows that periodic checkpointing is not

optimal for no-restart with a single processor pair, which provides

another hint of the difficulty of the problem. In the figure, we com-

pare four approaches: in addition to Restart(T rs

opt) andNoRestart(T
no

MTTI),

we use two non-periodic variants of no-restart, Non-Periodic(T1,T2).
In both variants, we use a first checkpointing period T1 while both
processors are alive, and then a shorter periodT2 as soon as one pro-
cessor has been struck by a failure. When an application failure oc-

curs, we start anew with periods of lengthT1. For both variants, we

only restart processors after an application failure, just as no-restart
does. The first variant uses T1 = T no

MTTI =
√
3µC (the MTTI is

10 1 100

MTBF (days)

0.4

0.6

0.8

1.0

Ra
tio

 to
 N

oR
es

ta
rt(

Tno M
TT

I)

Non-Periodic(Tno
MTTI, TYD)

Non-Periodic(Trs
opt, TYD)

Restart(Trs
opt)

Figure 2: Ratio of time-to-solution of two non-periodic
strategies and restart over time-to-solution of no-restart
(one processor pair, C = CR = 60).

M2 = 3
µ
2
) and the second variant uses T1 = T rs

opt =
(
3

4
Cµ2

) 1

3

. We

use the Young/Daly period T2 =
√
2µC for both variants, because

there remains a single live processor when period T2 is enforced.
The figure shows the ratio of the time-to-solution for the two non-

periodic approaches over that of periodic no-restart (with period

T no

MTTI). Note that the application is perfectly parallel, and that the

only overhead is for checkpoints and re-executions after failures.

Both non-periodic variants are better than no-restart, the first one
is within 98.3% of no-restart, and the second one is even better (95%

of no-restart) when the MTBF increases. We also see that restart
is more than twice better than no-restart with a single processor

pair. Note that results are averaged over 100,000 simulations, each

lasting for 10,000 periods, so that they are statistically guaranteed

to be accurate.

4.3 With b Processor Pairs
For b pairs, the reasoning is the same as with one pair, but the

probability of having a fatal error (both processors of a same pair

failing) before the end of the period changes. Letting pb (T) be the
probability of failure before time T with b pairs, we have pb (T) =

1−(1−(1−e−λT)2)b . As a consequence, computing the exact value

ofT
lost

(T) becomes complicated: obtaining a compact closed-form is

not easy, becausewewould need to expand terms using the binomial

formula. Instead, we directly use the Taylor expansion of pb (T) for
λT close to 0. Again, this is valid only ifT = Θ(λ−x)with x < 1. We

havepb (T) = 1−(1−(λT+o(λT))2)b = bλ2T 2+o(λ2T 2) and compute

T
lost

(T)with b pairs asT
lost

(T) = 1

pb (T)

∫ T
0

t dP(X ≤t)
dt dt = 2T

3
+o(T).

As before, T
lost

(T) ∼ 2T
3
. Also, as in Section 4.2, we analyze the

restart strategy, which requires any failed processor to recover

whenever a checkpoint is taken. We come back to the difference

with the no-restart strategy after deriving the period for the restart
strategy. We compute the expected execution time of one period:

E(T) = pb (T)
(
T
lost

(T) + D + R + E(T)
)
+ (1 − pb (T))

(
T + CR)

=

T + 2bλ2T 3

3
+ o(λ2T 3), and

Hrs(T) =
E(T)

T
− 1 =

CR

T
+
2bλ2T 2

3

+ o(λ2T 2). (19)

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

We finally derive the expression of the optimal checkpointing pe-

riod with b pairs:

T rs

opt =

(
3CR

4bλ2

) 1

3

= Θ(λ−
2

3). (20)

When plugging it back in Equation (19), we get

Hrs(T rs

opt) =

(
3CR√bλ

√
2

) 2

3

+ o(λ
2

3) = Θ(λ
2

3). (21)

for the optimal overhead when using b pairs of processors.

The derivation is very similar to the case with a single pair, and

the result is essentially the same, up to factoring in the number

of pairs to account for a higher failure rate. However, the differ-

ence between the no-restart and the restart strategies gets more

important. Indeed, with the no-restart strategy, several pairs can be

struck once (and even several times if the failures always strike the

failed processor) before a pair finally gets both its processors killed.

While the no-restart strategy spares the cost of several restarts, it

runs at risk with periods whose length has been estimated à la

Young/Daly, thereby assuming an identical setting at the beginning

of each period.

Finally, for the intuitive way to retrieve Equation (20), it goes as

for Equation (18), multiplying the frequency of fatal failures
1

µ
T
µ by

a factor b to account for each of the b pairs possibly experiencing a

fatal failure.

5 TIME-TO-SOLUTION
So far, we have focused on period length. In this section, we move to

actual work achieved by the application. Following [25], we account

for two sources of overhead for the application. First, the applica-

tion is not perfectly parallel and obeys Amdahl’s law [1], which

limits its parallel speedup. Second, there is an intrinsic slowdown

due to active replication related to duplicating every application

message [20, 25].

First, for applications following Amdahl’s law, the total time

spent to computeW units of computation with N processors is

TAmdahl = γW + (1−γ)
W
N = (γ +

1−γ
N)W , where γ is the proportion

of inherently sequential tasks. When replication is used, this time

becomesTAmdahl = (γ +
2(1−γ)
N)W . Following [25], we use γ = 10

−5

in Section 7. Second, as stated in [20, 25], another slowdown related

to active replication and its incurred increase of communications

writesTrep = (1+α)TAmdahl, where α is some parameter depending

upon the application and the replication library. Following [25], we

use either α = 0 or α = 0.2 in Section 7.

All in all, once we have derivedTopt, the optimal period between

two checkpoints without replication (see Equation (6)), and T rs

opt,

the optimal period between two checkpoints with replication and

restart (see Equation (20)), we are able to compute the optimal

number of operations to be executed by an application between

two checkpoints asWopt =
Topt(

γ+ 1−γ
N

) for an application without

replication, and W rs

opt =
T rs

opt

(1+α)
(
γ+ 1−γ

b

) = T rs

opt

(1+α)
(
γ+ 2(1−γ)

N

) for an

application with replication and the restart strategy. Finally, for the
no-restart strategy, using T no

MTTI (see Equation (11)), the number of

operations becomesW no

MTTI =
T no

MTTI

(1+α)
(
γ+ 1−γ

b

) = T no

MTTI

(1+α)
(
γ+ 2(1−γ)

N

) .

To compute the actual time-to-solution, assume that we have a

total ofWseq operations to do. With one processor, the execution

time isTseq =Wseq (assuming unit execution speed). With N proces-

sors working in parallel (no replication), the failure-free execution

time is Tpar = (γ +
1−γ
N)Tseq. Since we partition the execution into

periods of length T , meaning that we have

Tpar
T periods overall, the

time-to-solution is Tfinal =
Tpar
T E(T) = Tpar(H(T) + 1), hence

Tfinal =

(
γ +

1 − γ

N

)
(H(T) + 1)Tseq. (22)

If we use replication withb pairs of processors (i.e., N
2
pairs) instead,

the difference is that Tpar = (1 + α)
(
γ +

1−γ
b

)
Tseq, hence

Tfinal = (1+α)

(
γ +

2(1 − γ)

N

) (
γ +

2(1 − γ)

N

)
(H(T)+ 1)Tseq. (23)

Without replication, we use the optimal period T = Topt. For
the restart strategy, we use the optimal period T = T rs

opt, and for

no-restart, we use T = T no

MTTI, as stated above.

6 ASYMPTOTIC BEHAVIOR
In this section, we compare the restart and no-restart strategies
asymptotically. Both approaches (and, as far as we know, all co-

ordinated rollback-recovery approaches) are subject to a design

constraint: if the time between two restarts becomes of same mag-

nitude as the time to take a checkpoint, the application cannot

progress. Therefore, when evaluating the asymptotic behavior (i.e.,

when the number of nodes tends to infinity, and hence the MTTI

tends to 0), a first consideration is to state that none of these tech-

niques can support infinite growth, under the assumption that the

checkpoint time remains constant and that the MTTI decreases

with scale. Still, in that case, because the restart approach has a

much longer checkpointing period than no-restart, it will provide
progress for lower MTTIs (and same checkpointing cost).

However, we can (optimistically) assume that checkpointing

technology will evolve, and that rollback-recovery protocols will be

allowed to scale infinitely, because the checkpoint time will remain

a fraction of the MTTI. In that case, assume that with any numberN
of processors, we have C = xMN for some small constant x < 1

(where MN is the MTTI with N processors). Consider a parallel

and replicated application that would take a time Tapp to complete

without failures (and with no fault-tolerance overheads). We com-

pute the ratio R, which is the expected time-to-solution using the

restart strategy divided by the expected time-to-solution using the

no-restart strategy:

R =
(Hrs(T rs

opt) + 1)Tapp

(Hno(T no

MTTI) + 1)Tapp
=

3

√
9

8
πx2 + 1

√
2x + 1

.

Because of the assumption C = xMN , both the number of nodes N
and the MTBF µ simplify out in the above ratio. Under this assump-

tion, the restart strategy is up to 8.4% faster than the no-restart
strategy if x is within the range [0, 0.64], i.e., as long as the check-

point time takes less than 2/3 of the MTTI.

In the next section, we consider realistic parameters to evaluate

the performance of various strategies through simulations, and we

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

also provide results when increasing the number of processors N
or reducing the MTBF.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the no-restart and
restart strategies through simulations. Our simulator is publicly

available [7] so that interested readers can instantiate their pre-

ferred scenarios and repeat the same simulations for reproducibility

purpose. The code is written in-house in C++ and does not use any

library other than the Standard Template Library (STL).

We compare different instances of the models presented above.

We let Restart(T) denote the restart strategy with checkpointing pe-

riod T , and NoRestart(T) denote the no-restart strategy with check-

pointing period T . In most figures, we present the overhead as

given by Equation (1): it is a relative time overhead, that represents

the time spent tolerating failures divided by the duration of the

protected application. Recall previously introduced notations:

• For Restart(T), the overhead Hrs(T) is predicted by the model

according to Equation (19);

• For NoRestart(T), the overhead Hno(T) is estimated in the litera-

ture according to Equation (12);

•T rs

opt denotes the optimal period for minimizing the time overhead

for the restart strategy, as computed in Equation (20);

• T no

MTTI from Equation (11) is the standard period used in the

literature for the no-restart strategy, after an analogy with the

Young/Daly formula.

The no-restart strategy with overheadHno(T no

MTTI) represents the

state of the art for full replication [20]. For completeness, we also

compare the no-restart and restart strategies with several levels of

partial replication [17, 25].

We describe the simulation setup in Section 7.1. We assess the ac-

curacy of our model and of first-order approximations in Section 7.2.

We compare the performance of restart with restart-on-failure in
Section 7.3. In Section 7.4, we show the impact of key parame-

ters on the difference between the checkpointing periods of the

no-restart and restart strategies, and on the associated time over-

heads. Section 7.5 discusses the impact of the different strategies on

I/O pressure. Section 7.6 investigates in which scenarios a smaller

time-to-solution can be achieved with full or partial replication.

Section 7.7 explores strategies that restart after a given number of

failures.

7.1 Simulation Setup
To evaluate the performance of the no-restart and restart strategies,
we use a publicly available simulator [7] that generates random

failures following an exponential probability distribution with a

given mean time between individual node failures and number of

processor pairs. Then, we set the checkpointing period, and check-

pointing cost. Default values are chosen to correspond to the values

used in [25], and are defined as follows. For the checkpointing cost,

we consider two default values: C = 60 seconds corresponds to

buddy checkpointing, and C = 600 seconds corresponds to check-

pointing on remote storage. We let the MTBF of an individual node

be µ = 5 years, and we use N = 200, 000, hence having b = 100, 000

pairs when replication is used. We then simulate the execution of

an application lasting for 100 periods (total execution time 100T)

and we average the results on 1000 runs. We measure two main

quantities: time overhead and optimal period length. For simplicity,

we always assume that R = C , i.e., read and write operations take

(approximately) the same time. We cover the whole range of pos-

sible values for CR
, using either C, 1.5C or 2C . This will show the

impact of overlapping checkpoint and processor restart.

7.2 Model Accuracy
Figure 3 compares three different ways of estimating the time over-

head of an application running on b = 10
5
processor pairs. Solid

lines are measurements from the simulations, while dashed lines are

theoretical values. The red color is for Restart(T rs

opt), the blue color is

for Restart(T no

MTTI) and the green color is for NoRestart(T no

MTTI). For

the restart strategy, CR = C in this figure.

For the restart strategy, the results from simulation match the

results from the theory quite accurately. Because our formula is

an approximation valid when T ≫ C , the difference between sim-

ulated time overhead and Hrs(T rs

opt) slightly increases when the

checkpointing cost becomes greater than 1500 seconds. We also

verify that Restart(T rs

opt) has smaller overhead than Restart(T no

MTTI)

in the simulations, which nicely corroborates the model.

We also see that Hno(T no

MTTI) is a good estimate of the actual

simulated overhead of NoRestart(T no

MTTI) only for C < 500. Larger

values of C induce a significant deviation between the prediction

and the simulation. Values given by Hno(T) underestimate the over-

heads for lower values of C more than Hrs(T), even when using

the same T no

MTTI period to checkpoint. As described at the end of

Section 4.1, the Hno(T) formula is an approximation whose accu-

racy is unknown, and when C scales up, some elements that were

neglected by the approximation become significant. The formula

for T rs

opt, on the contrary, remains accurate for higher values of C .

Figure 4 is the exact counterpart of Figure 3 when using log traces

from real platforms instead of randomly generated failures with an

exponential distribution. We use the two traces featuring the largest

number of failures from the LANL archive [26, 27], namely LANL#2

and LANL#18. According to the detailed study in [2], failures in

LANL#18 are not correlated while those in LANL#2 are correlated,

providing perfect candidates to experimentally study the impact

of failure distributions. LANL#2 has an MTBF of 14.1 hours and is

composed of 5350 failures, while LANL#18 has anMTBF of 7.5 hours

and is composed of 3899 failures. For the sake of comparing with

Figure 3 that used a processor MTBF of 5 years (and an exponential

distribution), we scale both traces as follows:

• We target a platform of 200,000 processors with an individual

MTBF of 5 years. Thus the global platform MTBF needs to be 64

times smaller than the MTBF of LANL#2, and 32 times smaller than

the MTBF of LANL#18. Hence we partition the global platform into

64 groups (of 3,125 processors) for LANL#2, and into 32 groups (of

6,250 processors) for LANL#18;

•Within each group, the trace is rotated around a randomly chosen

date, so that each trace starts independently;

•We generate 200 sets of failures for each experiment and report

the average time overhead.

We observe similar results in Figure 3 and Figure 4. For LANL#18,

the experimental results are quite close to the model. For LANL#2,

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

0 500 1000 1500 2000 2500 3000 3500
Checkpoint duration (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

Figure 3: Evaluation of model accuracy
for time overhead. µ = 5 years, b = 10

5.

0 500 1000 1500 2000 2500 3000 3500
Checkpoint duration (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

0 1000 2000 3000
Checkpoint duration (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

Figure 4: Evaluation of model accuracy for time overhead with two trace logs
(LANL#18 on the left, and LANL#2 on the right).

the model is slightly less accurate because of some severely de-

graded intervals with failure cascades. However, the restart strategy
still grants lower time overheads than the no-restart strategy. For an
exponential distribution, only 15% of the runs where an application

failure was experienced did experience two or more failures. This

ratio increases to 20% for LANL#18 and reaches 50% for LANL#2;

this leads to a higher overhead than estimated for IID failures, but

this is true for all strategies, and restart remains the best one.

Next, on both graphs in Figure 5, we present the details of the

evolution of the time overhead as a function of the period length

for C = 60s and C = 600s. Here, we compare the overhead of the

restart strategy obtained through simulations (solid red, orange

and yellow lines for different values of CR
), the overhead of the

restart strategy obtained through the theoretical model with CR

=C (dashed blue line), and the overhead of the no-restart strategy
obtained through simulations (solid green line). In each case, a circle

denotes the optimal period, while T no

MTTI (the MTTI extension of

the Young/Daly formula for no-restart) is shown with a vertical bar.

Hrs(T rs

opt) perfectly matches the behavior of the simulations, and

the optimal value is very close to the one found through simulations.

The simulated overhead of NoRestart(T) is always larger than for

Restart(T), with a significant difference asT increases. Surprisingly,

the optimal value for the simulated overhead of NoRestart(T) is
obtained for a value of T close to T no

MTTI, which shows a posteriori
that the approximation worked out pretty well in this scenario. The

figure also shows that the restart strategy is much more robust than

the no-restart one: in all cases, Restart(T) provides a lower overhead
than NoRestart(T) throughout the spectrum, even when CR = 2C .
More importantly, this overhead remains close to the minimum for

a large range of values of T : when CR = C = 60s , for values of T
between 21,000s and 25,000s, the overhead remains between 0.39%

(the optimal), and 0.41%. If we take the same tolerance (overhead

increased by 5%), the checkpointing period must be between 6,000s

and 9,000s, thus a range that is 1/3rd larger than for the restart
strategy. When considering CR = C = 600s , this range is 18,000s
(40,000s to 58,000s) for the restart strategy, and 7,000s (22,000s to

29,000s) for the no-restart one. This means that a user has a much

higher chance of obtaining close-to-optimum performance by using

the restart strategy than if she was relying on the no-restart one,
even if some key parameters that are used to derive T rs

opt are mis-

evaluated. If CR = 1.5C or CR = 2C , the same trends are observed:

the optimal values are obtained for longer periods, but they remain

similar in all cases, and significantly lower than for the no-restart
strategy. Moreover, the figures show the same plateau effect around

the optimal, which makes the restart strategy robust.

7.3 Restart-on-failure
Figures 3 to 5 showed that the restart strategy is more efficient

than the no-restart one. Intuitively, this is due to the rejuvenation

introduced by the periodical restarts: when reaching the end of a

period, failed processes are restarted, even if the application could

continue progressing in a more risky configuration. A natural exten-

sion would be to consider the restart-on-failure strategy described

in Section 1. This is the scenario evaluated in Figure 6: we compare

the time overhead of Restart(T rs

opt) with restart-on-failure, which
restarts each processor after each failure.

Compared to Restart(T no

MTTI), the restart-on-failure strategy grants
a significantly higher overhead that quickly grows to high values

as the MTBF decreases. The restart-on-failure strategy works as

designed: no rollback was ever needed, for any of the simulations

(i.e., failures never hit a pair of replicated processors within the

time needed to checkpoint). However, the time spent checkpointing

after each failure quickly dominates the execution. This reflects the

issue with this strategy, and the benefit of combined replication

and checkpointing: as failures hit the system, it is necessary for

performance to let processors fail and the system absorb most of

the failures using the replicates. Combining this result with Fig-

ure 5, we see that it is critical for performance to find the optimal

rejuvenation period: restarting failed processes too frequently is

detrimental to performance, as is restarting them too infrequently.

7.4 Impact of Parameters
The graphs in Figure 7 describe the impact of the individual MTBF

of the processors on the time overhead. We compare Restart(T rs

opt),

Restart(T no

MTTI) (both in the most optimistic case when CR = C and

in the least optimistic case when CR = 2C) and NoRestart(T no

MTTI).

As expected, whenCR
increases, the time overhead increases. How-

ever, even in the case CR = 2C , both restart strategies outperform
the no-restart strategy. As the MTBF increases, the overhead of

all strategies tends to be negligible, since a long MTBF has the

cumulated effect that the checkpointing period increases and the

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

0 10000 20000 30000 40000
Period length T (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ti
m

e
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

0 20000 40000 60000 80000 100000
Period length T (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

Figure 5: Time overhead as a function of the checkpointing period T for C = 60

seconds (left) or C = 600 seconds (right), MTBF of 5 years, IID failures and b = 10
5

processor pairs.

100 101 102

MTBF (years)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

RestartOnFailure

Figure 6: Comparison with restart-on-
failure.

100 101 102

MTBF (years)

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
ov

er
he

ad

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

100 101 102

MTBF (years)

0.0

0.1

0.2

0.3

0.4

Ti
m

e
ov

er
he

ad

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

Figure 7: Time overhead as a function of MTBF, withC = 60s
(left) or C = 600s (right), b = 10

5 processor pairs.

risk of needing to re-execute decreases. The longer the checkpoint

time C , the higher the overheads, which is to be expected; more

interestingly, with higherC , the restart strategy needsCR
to remain

close toC to keep its advantage against the no-restart strategy. This
advocates for a buddy checkpointing approach with restart strategy
when considering replication and checkpointing over unreliable

platforms.

7.5 I/O Pressure
Figure 8 reports the difference betweenT rs

opt andT
no

MTTI. We see that

T rs

opt increases faster than T
no

MTTI when the MTBF decreases. This is

due to the fact that the processors are restarted at each checkpoint,

hence reducing the probability of failure for each period; it mainly

means that using the restart strategy (i) decreases the total appli-

cation time, and (ii) decreases the I/O congestion in the machine,

since checkpoints are less frequent. This second property is critical

for machines where a large number of applications are running

concurrently, and for which, with high probability, the checkpoint

times are longer than expected because of I/O congestion.

7.6 Time-To-Solution
Looking at the time overhead is not sufficient to evaluate the effi-

ciency of replication. So far, we only compared different strategies

that all use full process replication. We now compare the restart and
no-restart strategies to the approach without replication, and also

to the approach with partial replication [17, 25]. Figure 9 shows the

corresponding time-to-solution for γ = 10
−5

and α = 0.2 (values

100 101 102

MTBF (years)
0

2

4

6

9

Pe
rio

d
le

ng
th

 (d
ay

s)

Trs
opt (CR = C)

Trs
opt (CR = 1.5C)

Trs
opt (CR = 2C)

Tno
MTTI

100 101 102

MTBF (years)
0

2

4

6

9

Pe
rio

d
le

ng
th

 (d
ay

s)

Trs
opt (CR = C)

Trs
opt (CR = 1.5C)

Trs
opt (CR = 2C)

Tno
MTTI

Figure 8: Period length T as function of MTBF, with C = 60s
(left) or C = 600s (right), b = 10

5 processor pairs.

100 101 102

MTBF (years)

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

100 101 102

MTBF (years)

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

No replication
Restart(Trs

opt) (CR = C)
Partial90(Trs

opt) (CR = C)
Partial50(Tno

MTTI) (CR = C)

NoRestart(Tno
MTTI)

Lower bound with full replication
Lower bound without replication

Figure 9: Time-to-solution for N = 2 × 10
5 standalone proc.

against full and partial replication approaches, as a function
of MTBF, with CR = C = 60s (left) or CR = C = 600s (right),
γ = 10

−5,α = 0.2.

used in [25]), and CR = C when the individual MTBF varies. Recall

that the time-to-solution is computed using Equation (22) without

replication (where H(T) is given by Equation (7)), and using Equa-

tion (23) with replication (where H(T) is given by Equation (12) for

no-restart, and by Equation (19) for restart). In the simulations,Tseq
is set so that the application lasts one week with 100,000 processors

(and no replication).

In addition to the previously introduced approaches, we eval-

uate Partial90(T rs

opt) and Partial50(T no

MTTI). Partial90 represents a

partial replication approach where 90% of the platform is replicated

(there are 90,000 processor pairs and 20,000 standalone processors).

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

104 105 106

N

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

104 105 106

N

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

No replication
Restart(Trs

opt) (CR = C)
Partial90(Trs

opt) (CR = C)
Partial50(Tno

MTTI) (CR = C)

NoRestart(Tno
MTTI)

Lower bound with full replication
Lower bound without replication

Figure 10: Time-to-solution with MTBF of 5 years against
full and partial replication approaches, as a function of N ,
withCR = C = 60s (left) orCR = C = 600s (right), γ = 10

−5,α =
0.2.

Similarly, 50% of the platform is replicated for Partial50 (there are
50,000 processor pairs and 100,000 standalone processors). Figure 9

illustrates the benefit of full replication: when the MTBF becomes

too short, replication becomes mandatory. Indeed, in some cases,

simulations without replication or with partial replication would

not complete, because one fault was (almost) always striking before

a checkpoint, preventing progress. For C = 60s and N = 2 × 10
5
,

γ = 10
−5

and α = 0.2, full replication grants the best time-to-

solution for an MTBF shorter than 1.8 × 10
8
. However, when the

checkpointing cost increases, this value climbs up to 1.9 × 10
9
, i.e.,

roughly 10 times higher than with 60 seconds. As stated before,T rs

opt
gives a better overhead, thus a better execution time than T no

MTTI.

If machines become more unreliable, the restart strategy allows us

to maintain the best execution time. Different values of γ and α
give the same trend as in our example, with large values of γ mak-

ing replication more efficient, while large values of α reduce the

performance. Similarly to what was observed in [25], for a homoge-

neous platform (i.e., if all processors have a similar risk of failure),

partial replication (at 50% or 90%) exhibits lower performance than

no replication for long MTBF, and lower performance than the

no-restart strategy (hence even lower performance than the restart
strategy) for short MTBF. This confirms that partial replication has

potential benefit only for heterogeneous platforms, which is outside

the scope of this study.

We now further focus on discussing when replication should

be used. Figure 10 shows the execution time of an application

when the number of processors N varies. Each processor has an

individual MTBF of 5 years. The same general comments can be

made: Restart(T rs

opt) always grants a slightly lower time-to-solution

than NoRestart(T no

MTTI), because it has a smaller overhead. As before,

when N is large, the platform is less reliable and the difference

between Restart(T rs

opt) and NoRestart(T no

MTTI) is higher compared to

small values of N . We see that replication becomes mandatory

for large platforms: without replication, or even with 50% of the

platform replicated, the time-to-solution is more than 10 times

higher than the execution time without failures. With γ = 10
−5

and

α = 0.2, replication becomes more efficient than no replication for

N ≥ 2 × 10
5
processors when C = 60s. However, when C = 600s,

it starts being more efficient when N ≥ 2.5 × 10
4
, i.e., roughly

100 101 102

MTBF (years)

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

Restart-2(Trs
opt)

Restart-2(Tno
MTTI)

Restart-6(Trs
opt)

Restart-6(Tno
MTTI)

Restart-12(Trs
opt)

Restart-12(Tno
MTTI)

Restart-56(Trs
opt)

Restart-56(Tno
MTTI)

Restart-112(Trs
opt)

Restart-112(Tno
MTTI)

Restart-281(Trs
opt)

Restart-281(Tno
MTTI)

NoRestart(Tno
MTTI)

Figure 11: Comparison of restart strategy with restart only
every 2, 6, 12, 56, 112, or 281 dead proc., withT rs

opt andT
no
MTTI.

10 times less processors when C is 10 times longer. This study

further confirms that partial replication never proved to be useful

throughout our experiments.

7.7 When to Restart
In this section, we consider a natural extension of the restart ap-
proach: instead of restarting failed processors at each checkpoint,

the restart can be delayed until the next checkpoint where the

number of accumulated failures reaches or exceeds a given bound

n
bound

, thereby reducing the frequency of the restarts.

The restart strategy assumes that after a checkpoint, the risk of

any processor failing is the same as in the initial configuration. For

the extension, there is no guarantee that T rs

opt remains the optimal

interval between checkpoints; worse, there is no guarantee that

periodic checkpointing remains optimal. To evaluate the poten-

tial gain of reducing the restart frequency, we consider the two

proposed intervals: T rs

opt and T
no

MTTI. And, since most checkpoints

will not incur a restart, we assume CR = C when computing T rs

opt.

However, checkpoints where processes are restarted have a cost

of twice the cost of a simple checkpoint in the simulation: this is

the worst case for the restart strategy. We then simulate the execu-

tion, including restarts due to reaching n
bound

failures and due to

application crashes. With b = 100, 000 processor pairs, we expect

n
fail

(2b) = 561 failures before the application is interrupted; so we

will consider a large range of values for n
bound

: from 2, 6, 12, to

cover cases where few failures are left to accumulate, to 56, 112,

or 281, that represent respectively 10%, 20% and 50% of n
fail

(2b), to
cover cases where many failures can accumulate.

The results are presented in Figure 11, for a variable node MTBF.

The time overhead of the extended versions is higher than the time

overhead of the restart approach usingT rs

opt as a checkpointing (and

restarting) interval. The latter is also lower than the overhead of

the no-restart strategy, which on average corresponds to restarting

after n
bound

= n
fail

(2b) = 561 failures. This shows that restarting

the processes after each checkpoint consistently decreases the time

overhead. Using the optimal checkpointing period for restart T rs

opt,

increasing n
bound

also increases the overhead. Moreover, when

using small values (such as 2 and 6) for n
bound

, we obtain exactly

SC’19, November 2019, Denver, CO, USA Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert

the same results as for the restart strategy. This is due to the fact that
between two checkpoints, the restart strategy usually looses around
6 processors, meaning that restart is already the same strategy as

accumulating errors up to 6 (or less) before restarting. With n
bound

=12, on average the restart happens every two checkpoints, and the

performance is close, but slightly slower than the restart strategy.
Finally, an open problem is to determine the optimal checkpoint-

ing strategy for the extension of restart tolerating n
bound

failures

before restarting failed processors. This optimal strategy could ren-

der the extension more efficient than the baseline restart strategy.
Given the results of the simulations, we conjecture this optimal

number to be 0, i.e., restart would be the optimal strategy.

Summary. Overall, we have shown that the restart strategy with

period T rs

opt is indeed optimal and that our model is realistic. We

showed that restart decreases time overhead, hence time-to-solution,

compared to using no-restart with period T no

MTTI. The extended ver-

sion [6, 7] shows similar gains in energy overheads. The main

decision is still to decide whether the application should be repli-

cated or not. However, whenever it should be (which is favored

by a large ratio of sequential tasks γ , a large checkpointing cost

C , or a short MTBF), we are now able to determine the best strat-

egy: use full replication, restart dead processors at each checkpoint

(overlapped if possible), and use T rs

opt for the checkpointing period.

8 RELATEDWORK
Checkpoint-restart is the most widely used strategy to deal with

fail-stop errors. Several variants of this policy have been studied,

see [24] for a survey. The natural strategy is to checkpoint periodi-

cally, and one must derive the optimal checkpointing period. For a

divisible application, results were first obtained by Young [42] and

Daly [14]. The original strategy has been extended to deal with a

multi-level checkpointing scheme [5, 15, 29], or by using SSD or

NVRAM as secondary storage [10].

Combining replication with checkpointing has been proposed

in [18, 35, 45] for HPC platforms, and in [28, 41] for grid computing.

If the error rate and/or checkpoint cost is too important, and

hence the overhead induced by the checkpointing strategy is large,

checkpointing can be combined with replication. Hence, some re-

dundant MPI processes are used to execute a replica of the work [12,

19, 20]. For instance, Ferreira et al. [20] used two replicas per MPI

process, and they provided a theoretical analysis of parallel effi-

ciency, an MPI implementation that supports transparent process

replication (including failure detection, consistent message order-

ing among replicas, etc.), and a set of experimental and simulation

results. Hence, they demonstrate that replication outperforms tra-

ditional checkpoint/restart approach in several scenarios.

Partial redundancy is studied in [17, 36, 37] (in combination with

coordinated checkpointing) to decrease the overhead of full replica-

tion. Recently, Hussain et al. [25] have demonstrated the usefulness

of partial redundancy for platforms where individual node failure

distributions are not identical. They numerically determine the

optimal partial replication degree. For malleable applications, adap-

tive redundancy is discussed in [22], where a subset of processes is

dynamically selected for replication. Furthermore, the number of

processors on which the applications execute is changed at runtime,

yielding significant improvement in application performance.

In contrast to fail-stop errors whose detection is immediate, silent
errors are identified only when the corrupted data leads to an un-

usual application behavior, and several works use replication to

detect and/or correct silent errors. For instance, thread-level replica-

tion has been investigated in [13, 33, 43], which target process-level

replication in order to detect (and correct) silent errors striking in

all communication-related operations. Also, Ni et al. [30] introduce

process duplication to cope with both fail-stop and silent errors.

Recently, Benoit et al. [4] extended these work to general appli-

cations, and compare traditional process replication with group
replication, where the whole application is replicated as a black box.

They analyze several scenarios with duplication or triplication.

To the best of our knowledge, all related works use the no-restart
strategy: in a replicated execution, failed processes are not restarted

until the application experiences a fatal failure.

9 CONCLUSION
In this work, we have revisited process replication combined with

checkpointing, an approach that has received considerable atten-

tion from the HPC community in recent years. Opinion is divided

about replication. By definition, its main drawback is that 50%

of platform resources will not contribute to execution progress,

and such a reduced throughput does not seem acceptable in many

scenarios. However, checkpoint/restart alone cannot ensure full

reliability in heavily failure-prone environments, and must be com-

plemented by replication in such unreliable environments. Previous

approaches all used the no-restart strategy. In this work, we have

introduced a new rollback/recovery strategy, the restart strategy,
which consists of restarting all failed processes at the beginning

of each period. Thanks to this rejuvenation, the system remains in

the same conditions at the beginning of each checkpointing period,

which allowed us to build an accurate performance model and to de-

rive the optimal checkpointing period for this strategy. This period

turns out to be much longer than the one used with the no-restart
strategy, hence reducing significantly the I/O pressure introduced

by checkpoints, and improving the overall time-to-solution. To

validate this approach, we have simulated the behavior of realistic

large-scale systems, with failures either IID or from log traces. We

have compared the performance of restart with the state-of-the-art

strategies. Another key advantage of the restart strategy is its ro-

bustness: the range of periods in which its performance is close to

optimal is much larger than for the no-restart strategy, making it a

better practical choice to target unreliable platforms where the key

elements (MTBF and checkpoint duration) are hard to estimate. In

the future, we plan to evaluate, at least experimentally, non-periodic

checkpointing strategies that rejuvenate failed processors after a

given number of failures is reached or after a given time interval is

exceeded.

ACKNOWLEDGEMENT
We thank the reviewers for very helpful comments and sugges-

tions. This work was supported, in part, by the National Science

Foundation under Grant No. 1563744 (SHF: Medium: Collabora-

tive Research: Toward Extreme Scale Fault-Tolerance: Exploration

Methods, Comparative Studies and Decision Processes).

Replication Is More Efficient Than You Think SC’19, November 2019, Denver, CO, USA

REFERENCES
[1] G. Amdahl. The validity of the single processor approach to achieving large

scale computing capabilities. In AFIPS Conference Proceedings, volume 30, pages

483–485. AFIPS Press, 1967.

[2] G. Aupy, Y. Robert, and F. Vivien. Assuming failure independence: are we right

to be wrong? In FTS’2017, the Workshop on Fault-Tolerant Systems, in conjunction
with Cluster’2017. IEEE Computer Society Press, 2017.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and

S. Matsuoka. FTI: High performance fault tolerance interface for hybrid systems.

In Proc. SC’11, 2011.
[4] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and H. Sun. Coping

with silent and fail-stop errors at scale by combining replication and checkpoint-

ing. J. Parallel and Distributed Computing, 122:209–225, 2018.
[5] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. Towards optimal

multi-level checkpointing. IEEE Trans. Computers, 66(7):1212–1226, 2017.
[6] A. Benoit, T. Herault, V. L. Fèvre, and Y. Robert. Replication is more efficient than

you think. Research report RR-9278, INRIA, 2019.

[7] A. Benoit, T. Herault, V. L. Fèvre, and Y. Robert. Replication is more efficient

than you think: Code and technical report, August 2019. https://doi.org/10.5281/

zenodo.3366221.

[8] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra.

An evaluation of User-Level Failure Mitigation support in MPI. Computing,
95(12):1171–1184, 2013.

[9] R. Brightwell, K. Ferreira, and R. Riesen. Transparent redundant computing with

mpi. In EuroMPI. Springer, 2010.
[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale

resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.
[11] F. Cappello, K. Mohror, et al. VeloC: very low overhead checkpointing system.

https://veloc.readthedocs.io/en/latest/, march 2019.

[12] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. On the impact of process

replication on executions of large-scale parallel applications with coordinated

checkpointing. Future Generation Computer Systems, 51:7–19, 2015.
[13] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters.

Programming models and development software for a space-based many-core

processor. In 4th Int. Conf. on Space Mission Challenges for Information Technology,
pages 95–102. IEEE, 2011.

[14] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart

dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.
[15] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization of

multi-level checkpoint model for large scale HPC applications. In IPDPS. IEEE,
2014.

[16] N. El-Sayed and B. Schroeder. Reading between the lines of failure logs: Un-

derstanding how HPC systems fail. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–12, June 2013.

[17] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combin-

ing partial redundancy and checkpointing for HPC. In ICDCS. IEEE, 2012.
[18] C. Engelmann, H. H. Ong, and S. L. Scorr. The case for modular redundancy in

large-scale high performance computing systems. In PDCN. IASTED, 2009.
[19] C. Engelmann and B. Swen. Redundant execution of HPC applications with

MR-MPI. In PDCN. IASTED, 2011.
[20] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,

P. G. Bridges, and D. Arnold. Evaluating the Viability of Process Replication

Reliability for Exascale Systems. In SC’11. ACM, 2011.

[21] P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger. On Ramanujan’s

Q-Function. J. Computational and Applied Mathematics, 58:103–116, 1995.
[22] C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault tolerance

on large scale systems using application malleability. Procedia Computer Science,

9:166 – 175, 2012.

[23] R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed systems.

In A. Strohmeier, editor, Reliable Software Technologies — Ada-Europe ’96, pages
38–57, 1996.

[24] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance
Computing, Computer Communications and Networks. Springer Verlag, 2015.

[25] Z. Hussain, T. Znati, and R. Melhem. Partial redundancy in HPC systems with

non-uniform node reliabilities. In SC ’18. IEEE, 2018.
[26] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The failure trace archive: Enabling

comparative analysis of failures in diverse distributed systems. Cluster Computing
and the Grid, IEEE International Symposium on, pages 398–407, 2010.

[27] LANL. Computer failure data repository. https://www.usenix.org/cfdr-data,

2006.

[28] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. VolpexMPI: An MPI library for

execution of parallel applications on volatile nodes. In 16th European PVM/MPI
Users’ Group Meeting, pages 124–133. Springer-Verlag, 2009.

[29] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling,

and evaluation of a scalable multi-level checkpointing system. In SC. ACM, 2010.

[30] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart

for Soft and Hard Error Protection. In Proc. SC’13. ACM, 2013.

[31] X. Ni, E. Meneses, and L. V. Kalé. Hiding checkpoint overhead in HPC applications

with a semi-blocking algorithm. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pages 364–372. IEEE Computer Society, 2012.

[32] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, and P. Roth.

Modeling the impact of checkpoints on next-generation systems. In Proc. of IEEE
MSST, pages 30–46, 2007.

[33] M. W. Rashid and M. C. Huang. Supporting highly-decoupled thread-level redun-

dancy for parallel programs. In 14th Int. Conf. on High-Performance Computer
Architecture (HPCA), pages 393–404. IEEE, 2008.

[34] R. Riesen, K. Ferreira, and J. Stearley. See applications run and throughput jump:

The case for redundant computing in HPC. In Proc. of the Dependable Systems
and Networks Workshops, pages 29–34, 2010.

[35] B. Schroeder and G. A. Gibson. Understanding Failures in Petascale Computers.

Journal of Physics: Conference Series, 78(1), 2007.
[36] J. Stearley, K. B. Ferreira, D. J. Robinson, J. Laros, K. T. Pedretti, D. Arnold, P. G.

Bridges, and R. Riesen. Does partial replication pay off? In FTXS. IEEE, 2012.
[37] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. Programmer-directed

partial redundancy for resilient HPC. In Computing Frontiers. ACM, 2015.

[38] Top500. Top 500 Supercomputer Sites, November 2018. https://www.top500.org/

lists/2018/11/.

[39] E. Weisstein. Gauss hypergeometric function. From MathWorld–A Wol-

fram Web Resource. http://functions.wolfram.com/HypergeometricFunctions/

Hypergeometric2F1/03/04/02/.

[40] E. Weisstein. Incomplete Beta Function. From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/IncompleteBetaFunction.html.

[41] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. Using Replication and Checkpointing

for Reliable Task Management in Computational Grids. In SC’10. ACM, 2010.

[42] J. W. Young. A first order approximation to the optimum checkpoint interval.

Comm. of the ACM, 17(9):530–531, 1974.

[43] J. Yu, D. Jian, Z. Wu, and H. Liu. Thread-level redundancy fault tolerant CMP

based on relaxed input replication. In ICCIT. IEEE, 2011.
[44] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: an in-memory checkpoint-based

fault tolerant runtime for Charm++ and MPI. In Cluster Computing, 2004 IEEE
International Conference on, pages 93–103. IEEE Computer Society, 2004.

[45] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance

computing. In Cluster Computing. IEEE, 2009.

https://doi.org/10.5281/zenodo.3366221
https://doi.org/10.5281/zenodo.3366221
https://veloc.readthedocs.io/en/latest/
https://www.usenix.org/cfdr-data
https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/11/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/04/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/04/02/
http://mathworld.wolfram.com/IncompleteBetaFunction.html

	Abstract
	1 Introduction
	2 Model
	3 Background
	3.1 With a Single Processor
	3.2 With N Processors

	4 Replication
	4.1 Computing the Mean Time To Interruption
	4.2 With One Processor Pair
	4.3 With b Processor Pairs

	5 Time-To-Solution
	6 Asymptotic Behavior
	7 Experimental Evaluation
	7.1 Simulation Setup
	7.2 Model Accuracy
	7.3 Restart-on-failure
	7.4 Impact of Parameters
	7.5 I/O Pressure
	7.6 Time-To-Solution
	7.7 When to Restart

	8 Related Work
	9 Conclusion
	References

